Self-affine manifolds

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Framed Knots in 3-manifolds and Affine Self-linking Numbers

The number |K| of non-isotopic framed knots that correspond to a given unframed knot K ⊂ S is infinite. This follows from the existence of the self-linking number slk of a zerohomologous framed knot. We use the approach of Vassiliev-Goussarov invariants to construct “affine self-linking numbers” that are extensions of slk to the case of nonzerohomologous framed knots. As a corollary we get that...

متن کامل

Affine Anosov Diffeomorphims of Affine Manifolds

̂ M of the connection ∇M to the universal cover ̂ M of M is a locally flat connection. The affine structure of ̂ M is defined by a local diffeomorphism DM : ̂ M → R called the developing map. The developing map gives rise to a representation hM : π1 M → Aff R called the holonomy. The linear part L hM of hM is the linear holonomy. The affine manifold M,∇M is complete if and only if DM is a diffeomor...

متن کامل

Flat Bundles on Affine Manifolds

We review some recent results in the theory of affine manifolds and bundles on them. Donaldson–Uhlenbeck–Yau type correspondences for flat vector bundles and principal bundles are shown. We also consider flat Higgs bundles and flat pairs on affine manifolds. A bijective correspondence between polystable flat Higgs bundles and solutions of the Yang–Mills–Higgs equation in the context of affine m...

متن کامل

Two Examples of Affine Manifolds

An affine manifold is a manifold with a distinguished system of affine coordinates, namely, an open covering by charts which map homeomorphically onto open sets in an affine space E such that on overlapping charts the homeomorphisms differ by an affine automorphism of E. Some, but certainly not all, affine manifolds arise as quotients Ω/Γ of a domain in E by a discrete group Γ of affine transfo...

متن کامل

Complete affine manifolds: a survey

An affinely flat manifold (or just affine manifold) is a manifold with a distinguished coordinate atlas with locally affine coordinate changes. Equivalently M is a manifold equipped with an affine connection with vanishing curvature and torsion. A complete affine manifold M is a quotient E/Γ where Γ ⊂ Aff(E) is a discrete group of affine transformations acting properly on E. This is equivalent ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Mathematics

سال: 2016

ISSN: 0001-8708

DOI: 10.1016/j.aim.2015.11.022